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A non-linearly damped single-degree-of-freedom (s.d.o.f.) system under broadband
random excitation is considered. A procedure for in-service identi"cation of the damping
characteristic frommeasured stationary response is described. The procedure is based on the
stochastic averaging method. The explicit analytical solution is obtained for the integral
equation, which relates the desired damping characteristics to the apparent force in the
shortened equation for the slowly varying response amplitude, and thus to the measured
probability density of the amplitude. The approach is of a non-parametric nature, which
makes it convenient for testing hypotheses of damping mechanisms from measured random
vibration data. Extensive results of numerical tests for the procedure are presented.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Problems of identi"cation of systems' parameters are very important in engineering. There
are three di!erent types of identi"cation problems, such as on-line, in-service and in-tests.
On-line identi"cation, or one &&in-real time'', implies permanent monitoring of system's
performance and applying control force(s), if necessary, based on measured data. Feedback
control is a good example of &&real-time'' monitoring. On-line identi"cation may help in
timely detecting undesirable failures due to fatigue or crack propagation, for instance.
In-service identi"cation is based on signal processing of measured response to &&natural''
excitation, which may not be controlled and/or measurable. The on-line feedback control,
however, is not required in this case. Thus, o!-line signal processing may be used,
particularly for the case of random excitation, to estimate statistical characteristics of the
response that can be used for identi"cation. As for identi"cation in special tests, a controlled
input excitation can be applied, such as that in a simple hammer test or in shaker test with
harmonic excitation.
Solution to an &&inverse'', or identi"cation problem may imply, for example, development

of algorithm for evaluating unknown energy dissipation mechanism from response
measurements for a given structure. Such an algorithm should be strongly dependent on the
type of identi"cation. This paper is focused speci"cally on the in-service type of
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identi"cation for the case, where a broadband random excitation is the source of the
available response signal.
A number of identi"cationmethods have been proposed in last decades, such as those due

to references [1}4] etc. The method for in-tests identi"cation of a non-linear
single-degree-of-freedom (s.d.o.f.) system with harmonic excitation, as introduced by
Dimentberg [5], should be mentioned here. It is based on the harmonic balance
approximation for the response, which expresses steady state response amplitude and phase
as integrals of the original non-linear system's characteristics over the period of the
corresponding linear systems. In the &&inverse'' problem of identi"cation these relations are
actually integral equations of the "rst kind. More speci"cally, as shown in reference [5],
each of these equations is the Schlomilch's integral equation, which has an exact analytical
solution [6]. This solution provided explicit expression for the unknown non-linear
damping characteristics in terms of measured response amplitude and phase. The
corresponding identi"cation method has been successfully implemented and also extended
to the case of parametric excitation by Iourtchenko et al. [7]. The accuracy of the method
has been demonstrated, it depends on closeness of excitation frequency to the system's
natural frequency. This conclusion is clear, as long as the harmonic balance approximation
is particularly accurate in case of resonant oscillations. However, this approximation is
advantageous for accuracy of the resulting identi"cation method, since it does not require
di!erentiation of the rapidly varying response signal.
This paper represents a modi"cation of the above method for the case of in-service

identi"cation with broadband random excitation being the source of the measured
response. The stochastic averaging procedure leads to &&shortened'' stochastic di!erential
equations for slowly varying steady state response's amplitude and phase. An analytical
solution is known for the corresponding Fokker}Plank}Kolmogorov (FPK) equation for
probability density function (p.d.f.) of steady state response amplitude [8, 9], [5]. As long as
its p.d.f. is available for the measured response signal of the system to be identi"ed, the
above analytical solution may be regarded as the Schlomilch integral equation for the
unknown damping characteristics. Thus, the explicit solution for the latter is obtained,
provided the excitation intensity is known. Numerical simulation test results for the method
are presented in this paper for three cases of damping: linear viscous damping, dry-friction
damping and linear combination of these two.
There is a signi"cant di!erence between these two methods. In contrast to the method

with an external deterministic excitation, which requires several experimental runs to
recover a damping characteristic, one with a random input excitation requires just one long
simulation, which gives &&all'' possible stochastic information about the system's response
(the output process is assumed to be ergodic). Therefore, the method with random
excitation is an in-service type, whereas the method with harmonic excitation is an in-test
one.

2. PROBLEM FORMULATION

A s.d.o.f. system under zero mean Gaussian white-noise excitation is considered

x( #H (xR )#��x"��(t), (1)

whereH is a non-linear, odd function and �� is an intensity of white noise �(t). Actually, as
long as the system is considered to be lightly damped, the white-noise approximation may
be somewhat relaxed. Namely, � (t) may be regarded just as a broadband random process
with spectral density S (�), and ��"2�S(�). The process's spectral density may be
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considered in this case as a constant in the vicinity of the system's natural frequency. Thus,
the latter expression simply shows that the noise intensity �� is proportional to a value of
spectral density of a broadband process at the system's natural frequency. According to the
stochastic averaging method, slowly varying amplitude and phase are introduced as new
state variables using the transformation

x"A cos �, xR "!�A sin �, �"�t#� (2)

which is substituted into equation (1). Then a set of two Stratonovich or physical stochastic
di!erential equations is obtained

AQ "H(!A� sin �)
sin �
�

!

sin �
�

�� (t), �Q "H (!A� sin �)
cos �
A�

!

cos �
A�

��(t). (3)

According to the stochastic averaging method [8, 9], the RHSs of these SDEs may be
approximated by their averaged-over-the-period expressions. The averaging is performed
over rapidly varying time, with slowly varying amplitude and phase being kept constant. By
addingWong}Zakai corrections one may obtain the following &&shortened'' Ito SDE for the
response amplitude

AQ "!h(A)#B�/A#2B�� (t), h (A)"
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4��
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A stationary p.d.f. p(A) of the amplitude satis"es the corresponding FPK equation

d

dA
�[!h (A)#B�/A]p�"

d�

dA�
�B�p� (5)

and may be found as [8, 9]

p (A)"2CAe�����, where
d

dA
G(A)"

h (A)

B�
, (6)

where C is a normalizing constant. An accurate interpolation of a p.d.f. of the response's
amplitude, p(A) from experimental data is very important. The authors found it more
convenient, to work with another, new variable <"A�. Equation (6) is transformed
then to the p.d.f. p (<) of the new variable <, and the unknown function G(�<) may be
expressed accordingly as

p (<)"Ce������ and G(�<)"lnC!ln p(<). (7)

Thus, if p(A) is a known (measured) function, then the corresponding function h (A), can
be used to recover an unknown, non-linear damping characteristic, provided that the
excitation intensity is known. The available solution to the Schlomilch's integral equation is
used to this end. Namely, the integral equation

f (	)"
2

� �
���

�

� (	 sin�) d� (8)

with known function f (	) has the explicit solution [6]:
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Figure 1. Logarithm of normalized stationary p.d.f. of response amplitude and its interpolation: linear.
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Relation (4) for h (A), with the latter function being known from the measured response
p.d.f., may be reduced to form (8), where

	"A�, f (	)"�h (	/�)	, � (	 sin�)"uH(u), u"	 sin�.

Thus, using solution (9) the unknown damping characteristic may be obtained as

H (	)"� �
���

�

�h(	 sin�)#	 sin� h
(	 sin�)�dn. (10)

3. IMPLEMENTATION AND RESULTS

To demonstrate how the foregoing method works and to illustrate its accuracy, three
simple models of damping are considered: linear viscous friction, dry friction and
combination of both. Numerical simulation of equation (1) has been done to acquire the
required response data using fourth order scheme Runge}Kutta, with unit intensity of white
noise. Statistical information of response amplitude was collected for 6500¹, where
¹"2�/� is the system's natural period.
Consider "rst the case of linear viscous friction. The results were obtained from numerical

simulation forH"�xR , �"0)02 and �/�"0)02. Figure 1 demonstrates the logarithm of the
normalized stationary p.d.f. of the response's amplitude (7) and its interpolation.
Taking into account equation (6) for h (A), an unknown damping characteristic is

recovered

G(�<)"0)0204<"0)0204A�, h (A)"
0)0204

2
A, h(	)"

0)0204

2
	,

H(	)"�
���

�

0)0408	 sin�

2
d�"0)0204	. (11)

Figure 1 and equation (11) show that the damping characteristic, as restored according to
the present approach, is linear indeed, whereas the assigned (exact) value of the damping
factor is found with 2% accuracy. Such a high accuracy could be expected for the linear
system.
As a second example, a systemwith (non-linear) dry friction damping is considered, where

H"R sgnxR , R"0)1. The result of numerical simulation is shown in Figure 2.
The interpolation of data results in the following estimates for G(A), h (A) and dissipation

characteristics H (	) accordingly:
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Figure 2. Logarithm of normalized stationary p.d.f. of response amplitude and its interpolation: dry friction.
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As it can be seen from equation (12), the absolute error in the estimate of the dry-friction
coe$cient is higher for this case*about 10%. However, this error can still be considered as
an acceptable one for in-service measurements in engineering practice.
Finally, the case of a combined non-linear damping characteristic, consisting of both

linear and dry-friction parts, is considered, with the same values of R and �. Numerical
simulation produced the results
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Results (13) indicate that the estimate of dry-friction coe$cient has improved signi"cantly,
whereas the absolute error in the estimate of the linear damping coe$cient increased up to 8%.

4. CONCLUSIONS

The in-service identi"cation method has been developed and implemented for randomly
excited non-linear systems. The method does not require continuous measurements of
the excitation, as long as the latter is known to be broadband; the intensity level of the
excitation should be known only. As long as the method relies on the averaging over the
period of the non-linear damping function, it should be regarded as being approximate. On
the other hand, operation with slowly varying state variables provides also a very important
advantage. Namely, the method should be highly robust with respect to measurement
errors, as long as no direct operations with rapidly varying original signals are required.
The ultimate veri"cation of accuracy should be obtained, of course, in special computer
runs with arti"cially introduced simulated measurement errors.
The method can be clearly extended to multi-degree-of-freedom systems with

well-separated (coupled) natural frequencies. Applying it to the band-pass-"ltered response
signal, with the "lters being tuned to various peaks of the response spectral density, should
provide the corresponding modal damping functions.
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